Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. X (2011), 683-710

Markov uniqueness of degenerate elliptic operators

DEREK W. ROBINSON AND ADAM SIKORA

Abstract. Let Ω be an open subset of \mathbb{R}^d and $H_\Omega = -\sum_{i,j=1}^d \partial_i c_{ij} \partial_j$ be a second-order partial differential operator on $L_2(\Omega)$ with domain $C_c^\infty(\Omega)$, where the coefficients $c_{ij} \in W^{1,\infty}(\Omega)$ are real symmetric and $C = (c_{ij})$ is a strictly positive-definite matrix over Ω . In particular, H_Ω is locally strongly elliptic. We analyze the submarkovian extensions of H_Ω , *i.e.*, the self-adjoint extensions that generate submarkovian semigroups. Our main result states that H_Ω is Markov unique, *i.e.*, it has a unique submarkovian extension, if and only if $\operatorname{cap}_\Omega(\partial\Omega) = 0$ where $\operatorname{cap}_\Omega(\partial\Omega)$ is the capacity of the boundary of Ω measured with respect to H_Ω . The second main result shows that Markov uniqueness of H_Ω is equivalent to the semigroup generated by the Friedrichs extension of H_Ω being conservative.

Mathematics Subject Classification (2010): 47B25 (primary); 47D07, 35J70 (secondary).