Markov uniqueness of degenerate elliptic operators

Derek W. Robinson and Adam Sikora

Abstract

Let Ω be an open subset of \mathbb{R}^{d} and $H_{\Omega}=-\sum_{i, j=1}^{d} \partial_{i} c_{i j} \partial_{j}$ be a second-order partial differential operator on $L_{2}(\Omega)$ with domain $C_{c}^{\infty}(\Omega)$, where the coefficients $c_{i j} \in W^{1, \infty}(\Omega)$ are real symmetric and $C=\left(c_{i j}\right)$ is a strictly positive-definite matrix over Ω. In particular, H_{Ω} is locally strongly elliptic. We analyze the submarkovian extensions of H_{Ω}, i.e., the self-adjoint extensions that generate submarkovian semigroups. Our main result states that H_{Ω} is Markov unique, i.e., it has a unique submarkovian extension, if and only if $\operatorname{cap}_{\Omega}(\partial \Omega)=0$ where $\operatorname{cap}_{\Omega}(\partial \Omega)$ is the capacity of the boundary of Ω measured with respect to H_{Ω}. The second main result shows that Markov uniqueness of H_{Ω} is equivalent to the semigroup generated by the Friedrichs extension of H_{Ω} being conservative.

Mathematics Subject Classification (2010): 47B25 (primary); 47D07, 35J70 (secondary).

